Fancolete Hospitalaria

Serie TKE Slim

TROX Latinamerica

4 +55 (11) 3037-3900 © +55 (11) 97395-1627

Rua Alvarenga, 2025 - Butantã Servicio de atención al Cliente 05509-005 - São Paulo - SP - Brasil trox-latinamerica@troxgroup.com www.trox-latinamerica.com

Descripción

Desarrollado para cumplir con las más altas normas de calidad y confiabilidad, el Fancolete TKE-Slim se caracteriza por ser un equipo compacto, robusto, silencioso, versátil, de alto rendimiento y alta eficiencia energética, que incorpora los mejores componentes y los diseños más modernos de control, con el objetivo de lograr niveles óptimos de confort térmico y calidad del aire.

El TKE-SLIM es indicado para su aplicación en Hospitales, Laboratorios y Clínicas, y cualquier otra instalación donde se requiera filtración hasta ISO H45 (H14), siendo especialmente diseñado para ser instalado empotrado en el techo con falso revestimiento (Built-in). Siempre contando con la experiencia y calidad de TROX, reconocida por los diseñadores, instaladores у proveedores servicios, TKE-Slim busca satisfacer plenamente las expectativas y necesidades de los clientes, al unir la alta calidad de los equipos TROX con la practicidad en la instalación, operación y mantenimiento, asegurando un equipo de óptimo rendimiento y alta durabilidad.

Entre sus principales características se encuentran:

Sistemas

El TKE-Slim es la opción perfecta para instalaciones tanto de sistemas de expansión directa (DX) como de agua fría.

Aplicación /Tipo de ambiente / Locales

El TKE-SLIM ha sido especialmente desarrollado para su aplicación en ambientes donde se requiere mejorar la calidad del aire interior IAQ y combatir la propagación de partículas y contaminantes biológicos.

Calidad del aire ambiente/ Comodidad ambiental

Además de la filtración, la mejora de la calidad del aire y la pureza en el medio ambiente se logra a través de su recirculación, un proceso en el que los contaminantes se eliminan del aire, proporcionando una reducción significativa en la carga de microorganismos en el medio ambiente.

Lugar de instalación

El TKE-Slim es la solución ideal cuando el espacio para su instalación en el techos es limitado. Debido a que es compacto, se puede montar empotrado en el techo (Builtin). El revestimiento debajo del equipo debe ser extraíble (revestimiento falso) para permitir el mantenimiento, cuyo acceso solo es posible desde el lado inferior. Los equipos se pueden instalar en UCI, pasillos, salas y otras dependencias. Las condiciones del aire en el revestimiento. donde se expone el equipo, deben limitarse al TBS Máximo de 24ºC con una Humedad Relativa máxima del 50% para evitar la condensación.

Tamaños / Combinación de secciones

Disponible en varios tamaños, el TKE-Slim cumple con el rango de capacidad térmica nominal entre 0,75 RT y 5TR, y el rango de flujo de aire entre 510 m³/h y 3400 m³/h.

Existen multitud de posibilidades para combinar secciones, desde las más sencillas hasta las más completas con sección de filtro absoluto, haciendo del TKE-Slim un equipo adaptado a las más diversas aplicaciones.

Compacto

Con dimensiones reducidas, el TKE-Slim es compacto, ligero y versátil, proporcionando una fácil instalación y mantenimiento. En cuanto a la altura, teniendo en cuenta la dimensión externa del equipo, existen 2 opciones dependiendo de su capacidad, 367mm y 467mm.

Alta eficiencia energética / Bajo costo de operación/ mantenimiento

El TKE-Slim tiene altos índices de eficiencia energética y rendimiento debido al uso de tecnologías y componentes eficientes, tales como:

- Armario de alta estanqueidad, excelente aislamiento térmico y prácticamente libre de puente térmico.
- Filtros con baja pérdida de carga, eso permite intervalos de reemplazo más largos.
- Motor con tecnología EC, energéticamente eficiente, alcanzando la clase de eficiencia IE4.
- Opción UV, que ayuda a mantener limpia la superficie de la serpentina y, en consecuencia, a mantener su capacidad de enfriamiento ideal.

Silencioso

El TKE-Slim es silencioso debido al uso de ventiladores tipo EC y la posibilidad de usar atenuadores de ruido.

Mantenimiento / limpieza / cambio de filtros

El acceso a los componentes internos del TKE-Slim, necesarios para el mantenimiento, cambio de filtro y limpieza, se realiza de forma sencilla y rápida a través de paneles ubicados en la parte inferior del equipo. Los filtros y resistencias son extraíbles a través de un sistema de cajones.

Acceso restringido / Seguridad

Por seguridad, la lámpara UV (opcional) se apaga a través del sensor cuando se abre el panel de acceso a la sección.

Lado hidráulico / eléctrico

Tanto las conexiones hidráulicas de la serpentina, bandeja y humidificador como las conexiones eléctricas del ventilador, UV, humidificador y resistencia eléctrica se pueden configurar en el lado derecho o izquierdo del TKE - Slim.

Instalación / Montaje

El TKE-Slim se instala suspendido en el techo mediante tirantes.

Conexiones de aire

La conducción tanto del aire externo como del aire de retorno y la insuflación al ambiente a acondicionar se realiza a través de conductos conectados al TKE-Slim.

Armario

El armario TKE-Slim está compuesto por:

- Estructura ensamblada a través de la conexión entre perfiles de aluminio extruido acabados en material termoplástico y esquinas de nylon.
- Paneles: son de tipo sándwich, doble pared, con un espesor de 25mm, externamente con chapas de acero galvanizado y color blanco pintado RAL9003 e internamente con chapa galvanizada NBR 7008 Z275, con aislamiento en poliuretano expandido (PU).

Las principales características del armario TKE-Slim son:

- Fácil higienización armario con una superficie interna lisa e higiénica libre de obstrucciones (estructuras) que dificultarían su limpieza.
- Acceso el acceso para el mantenimiento y la limpieza se realiza de manera fácil y rápida a través de paneles extraíbles ubicados en el lado inferior del gabinete.

Caja de mezcla

La caja de mezcla es la sección del TKE-Slim donde se realiza la entrada y mezcla del aire externo y del aire de retorno a través de los conductos.

El TKE-Slim está preparado para conectarse a los conductos a través de compuertas, las cuales están colocadas en la parte frontal del equipo.

La compuerta de aire externo está dimensionada para un flujo nominal de aproximadamente el 15% del flujo de insuflación.

La compuerta de aire de retorno está dimensionada para un flujo nominal de aproximadamente el 85% del flujo de insuflación.

Insuflación

La sección de Insuflado del TKE-Slim es la sección donde se descarga el aire acondicionado, siendo conducido por el conducto hasta la rejilla para ser insuflado en el ambiente.

La conexión del conducto de aire de insuflación se realiza directamente en la estructura TKE-Slim, en la parte frontal

posterior del equipo.

Serpentinas

Las serpentinas, tanto de enfriamiento como de calentamiento, consisten en una estructura formada por las cabeceras y laterales de acero galvanizado, por el sistema de flujo de fluidos formado por los tubos sin soldadura y curvas de cobre, ambas con un diámetro externo de 3/8", por los colectores de cobre y conexiones de latón, y aletas de aluminio, que al ser de tipo corrugado, proporciona la optimización del intercambio térmico.

La serpentina de enfriamiento usa agua fría y R-410a (expansión directa). La serpentina de calentamiento usa el fluido de agua caliente.

Bandeja de condensado

Debajo del serpentina, se instala una bandeja de recogida de condensado, fabricada en chapa de acero inoxidable AISI 304.

Filtro de aire

El TKE-Slim incorpora los más modernos conceptos de filtración, con el objetivo de conseguir la mejor calidad del aire ambiente, imprescindible en Hospitales, Laboratorios y Clínicas. Están disponibles filtros gruesos, medios, finos y HEPA.

Ventilador

Los ventiladores centrífugos plug fan son compactos, perfectos para mover el aire de manera eficiente en todo el rango de funcionamiento, y son ideales para el TKE-Slim, ya que proporcionan la presión y el volumen de aire necesarios para las aplicaciones para las que están destinados.

El motor con tecnología EC, conmutado electrónicamente a través del controlador integrado, garantiza un menor consumo de energía debido al control automático del flujo.

Resistencia eléctrica de calentamiento o deshumidificación

Las resistencias son de tipo con aletas, compuestas por un elemento resistivo tubular con aletas paralelas para

la disipación de calor, y los tubos son hechos de acero inoxidable AISI 304 y las aletas hechas de acero galvanizado.

La extracción del cajón inferior permite un fácil mantenimiento.

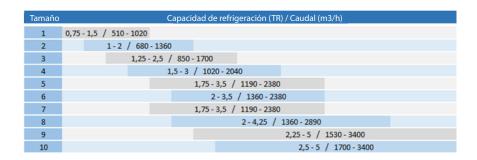
Lámpara Germicida

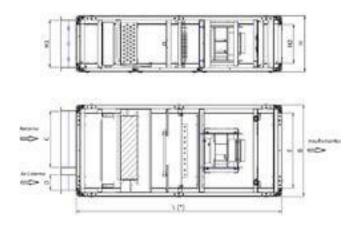
La Lámpara Germicida emite radiación UV-C, usada con el fin de inactivar o reducir los microorganismos depositados sobre la serpentina y la bandeja de condensados, evitando la formación de biopelículas y colonias sobre superficies húmedas y promoviendo así una mayor vida útil de la serpentina y evitando la proliferación y propagación de microorganismos.

El uso de lámparas UV-C maximiza la eficiencia energética del TKE-Slim al mantener la serpentina limpia y, en consecuencia, mantener una capacidad óptima de transferencia de calor y enfriamiento, minimizando la necesidad de una limpieza constante de la serpentina y el uso de productos químicos nocivos.

Humidificador

El humidificador tiene como objetivo mantener el nivel recomendado de humedad del aire en el ambiente.


Atenuador de ruido


El atenuador de ruido es un dispositivo usado en el TKE-Slim con el fin de absorber el ruido generado por los ventiladores, permitiendo mantener niveles acústicos adecuados. La atenuación prevista es -4db (A) para los tamaños 1 a 6 y -6db (A) para los tamaños 7 a 10.

Tamaños disponibles

La selección de la capacidad térmica nominal y el flujo determinan el tamaño del TKE-Slim, es decir, la altura (H) y el ancho (B).

La capacidad térmica nominal oscila entre 0,75TR y 5TR, y el rango de flujo de aire oscila entre 510 m³/h y 3400 m³/h.

Tamaño	н	В	Damper AR externo	Damper Retorno	inflación
iamano	н	В	H1 x D	H1 x C	H2 x E
1	367	600	305 x 100	305 x 370	287 x 520
2	367	750	305 x 100	305 x 520	287 x 670
3	367	900	305 x 100	305 x 670	287 x 820
4	367	1050	305 x 120	305 x 800	287 x 970
5	367	1200	305 x 140	305 x 930	287 x 1120
6	367	1350	305 x 220	305 x 1000	287 x 1270
7	467	900	405 x 100	405 x 670	387 x 820
8	467	1050	405 x 120	405 x 800	387 x 970
9	467	1200	405 x 140	405 x 930	387 x 1120
10	467	1350	405 x 220	405 x 1000	387 x 1270

L (*) - ver tabla "Combinación de secciones"

Selección de tamaño

Ejemplo:

Datos de entrada:

- Clase de filtro: G4+M5+F7+H13 - opciones según tabla "Selección de los filtros"

- Capacidad nominal: 1,5 TR- Presión disponible: 350 Pa

Tamaño seleccionado:

- Tam. 3

- Capacidad: 1,72 TR

- Presión disponible Máx: 450 Pa

	Con Define and Alexander	TD	0.75	4	1.05	4.5	4.75	2	2.25
				1				_	
tamano u						1020	1190	1360	1530
				_	-,-				
				-	-				
1				_	-,-				
	presión estática disponible	Pa	600	400	200				
	Nível ruído	dB(A)	71	73	76				
	Veloc. Face Serpentina	m/s		1,3	1,7	2,0	2,3		
	Cap. Refrigeración Maxima	TR		1,12	1,35	1,56	1,75		
2	Flujo de agua	m³/h		0,6	0,7	0,9	1		
	presión estática disponible	Pa		600	450	300	100		
	Nível ruído	dB(A)		68	70	74	76		
	Veloc. Face Serpentina	m/s ¹			1,3	1,6	1,8	2,1	
l	Cap. Refrigeración Maxima	TR *			1,49	1,72	1,94	2,15	
3	Flujo de agua	m³/h ¹			0,8	0,9	1,1	1,2	
l	presión estática disponible	Pa			550	450	300	150	
	Nível ruído	dB(A) ²			67	70	72	73	
	Veloc. Face Serpentina	m/s				1,3	1,5	1,7	1,9
	Cap. Refrigeración Maxima	TR				1,85	2,09	2,32	2,53
4	Flujo de agua	m³/h				1	1,1	1,3	1,4
	presión estática disponible	Pa				550	450	300	150
	Nível ruído	dB(A)				67	69	70	71
	2	presión estática disponible Nível ruído Veloc. Face Serpentina Cap. Refrigeración Maxima Flujo de agua presión estática disponible Nível ruído Veloc. Face Serpentina Cap. Refrigeración Maxima Flujo de agua presión estática disponible Nível ruído Veloc. Face Serpentina Cap. Refrigeración Maxima Flujo de agua presión estática disponible Nível ruído	tamaño del caudal m³/h Veloc. Face Serpentina m/s Cap. Refrigeración Maxima TR 1 Flujo de agua m³/h presión estática disponible Pa Nível ruído dB(A) Veloc. Face Serpentina TR 2 Flujo de agua m³/h presión estática disponible Pa Nível ruído dB(A) Veloc. Face Serpentina TR 2 Flujo de agua m³/h presión estática disponible Pa Nível ruído dB(A) Veloc. Face Serpentina TR Gap. Refrigeración Maxima TR Flujo de agua m³/h presión estática disponible Pa Nível ruído dB(A) a Veloc. Face Serpentina TR Flujo de agua m³/h presión estática disponible Pa Veloc. Face Serpentina TR Flujo de agua m³/h presión estática disponible Pa	tamaño del caudal m¹/h 510 Veloc. Face Serpentina m/s 1,3 Cap. Refrigeración Maxima TR 0,90 1 Flujo de agua m³/h 0,5 presión estática disponible Pa 600 Nivel ruído dB(A) 71 Veloc. Face Serpentina TR 2 Flujo de agua m³/h presión estática disponible Pa Mivel ruído dB(A) 1 Veloc. Face Serpentina TR 2 Flujo de agua m³/h presión estática disponible Pa Mivel ruído dB(A) Veloc. Face Serpentina TR 3 Flujo de agua m³/h presión estática disponible Pa Mivel ruído dB(A) Veloc. Face Serpentina TR 1 Veloc. Face Serpentina TR 1 Flujo de agua m³/h presión estática disponible Pa TR 1 Veloc. Face Serpentina TR 1	tamaño del caudal m³/h 510 680 Veloc. Face Serpentina m/s 1,3 1,8 Cap. Refrigeración Maxima TR 0,90 1,05 1 Flujo de agua m³/h 0,5 0,6 presión estática disponible Pa 600 400 Nível ruído dB(A) 71 73 Veloc. Face Serpentina TR 1,12 2 Flujo de agua m³/h 0,6 presión estática disponible Pa 600 Nível ruído dB(A) 68 Veloc. Face Serpentina TR 1,12 2 Flujo de agua m³/h 0,6 presión estática disponible Pa 600 Nível ruído dB(A) 68 Veloc. Face Serpentina TR 1 Veloc. Face Serpentina TR 1 Serpentina TR 1 Veloc. Face Serpentina TR 1 Flujo de agua m³/h 1 presión estática disponible Pa Mível ruído dB(A) 3 Veloc. Face Serpentina TR 1 Veloc. Face Serpentina TR 1	tamaño del caudal m³/h 510 680 850 Veloc. Face Serpentina m/s 1,3 1,8 2,2 Cap. Refrigeración Maxima TR 0,90 1,05 1,14 1 Flujo de agua m³/h 0,5 0,6 0,6 presión estática disponible Pa 600 400 200 Nivel ruído dB(A) 71 73 76 Veloc. Face Serpentina TR 1,12 1,35 2 Flujo de agua m³/h 0,6 0,7 presión estática disponible Pa 600 450 Nível ruído dB(A) 68 70 Veloc. Face Serpentina TR 1,12 1,35 2 Flujo de agua m³/h 0,6 0,7 presión estática disponible Pa 600 450 Nível ruído dB(A) 68 70 Veloc. Face Serpentina TR 1,49 Flujo de agua m³/h 0,8 presión estática disponible Pa 550 Nível ruído dB(A) 2 67 Veloc. Face Serpentina TR 1,49 Flujo de agua m³/h 0,8 presión estática disponible Pa 550 Veloc. Face Serpentina TR 1,49 Flujo de agua m³/h 75 Veloc. Face Serpentina TR 1,49 Flujo de agua m³/h 75 Veloc. Face Serpentina TR 1,49 Flujo de agua m³/h 75 Flujo de agua m³/h 75	tamaño del caudal m³/h 510 680 850 1020 Veloc. Face Serpentina m/s 1,3 1,8 2,2 Cap. Refrigeración Maxima TR 0,90 1,05 1,14 1 Flujo de agua m³/h 0,5 0,6 0,6 0,6 presión estática disponible Pa 600 400 200 Nivel ruído dB(A) 71 73 76 Veloc. Face Serpentina TR 1,12 1,35 1,56 2 Flujo de agua m³/h 0,6 0,7 0,9 presión estática disponible Pa 600 450 300 Nivel ruído dB(A) 68 70 74 Veloc. Face Serpentina TR 1,12 1,35 1,56 2 Flujo de agua m³/h 0,6 0,7 0,9 presión estática disponible Pa 600 450 300 Nivel ruído dB(A) 68 70 74 Veloc. Face Serpentina TR 1,3 1,6 Cap. Refrigeración Maxima TR 1,49 1,72 Flujo de agua m³/h 0,8 0,9 presión estática disponible Pa 550 450 Nivel ruído dB(A) 1 70 Veloc. Face Serpentina TR 1,3 1,6 Cap. Refrigeración Maxima TR 1,49 1,72 Truín Tr	tamaño del caudal m³/h 510 680 850 1020 1190 Veloc. Face Serpentina m/s 1,3 1,8 2,2 1,14 1,15	tamaño del caudal m³/h 510 680 850 1020 1190 1360 Veloc. Face Serpentina m/s 1,3 1,8 2,2 Cap. Refrigeración Maxima TR 0,90 1,05 1,14 1 Flujo de agua m³/h 0,5 0,6 0,6 0,6 presión estática disponible Pa 600 400 200 presión estática disponible Pa 1,3 1,7 2,0 2,3 Cap. Refrigeración Maxima TR 1,12 1,35 1,56 1,75 2 Flujo de agua m³/h 0,6 0,7 0,9 1 presión estática disponible Pa 600 450 300 100 Nível ruído dB(A) 68 70 74 76 Veloc. Face Serpentina m/s 1,3 1,6 1,8 2,1 Cap. Refrigeración Maxima TR 1,49 1,72 1,94 2,15 Flujo de agua m³/h 0,8 0,9 1,1 1,2 presión estática disponible Pa 550 450 300 150 Nível ruído dB(A) a 68 70 70 72 73 Veloc. Face Serpentina m/s 1,3 1,5 1,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7

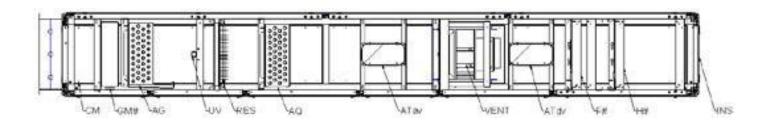
⁽¹⁾ Datos de la batería para la máxima capacidad de refrigeración, según la tabla "condiciones de selección de la batería"
(2) Nivel de ruido estimado considerando:

-una habitación estándar con una absorción ambiental de 10db B(A)
-Presión acústica a 1m
-Presión disponible 150Pa

lase		Cap. Refrigeración (Nominal)	TR	0,75	1	1,25	1,5		2	2,25	2,5	2,75	3	3,25		3,75	4	4,25	4,5	4,75	
	tamaño del		m³/h	510	680	850	1020	1190	1360	1530	1700	1870	2040	2210	2380	2550	2720	2890	3060	3230	34
		Veloc. Face Serpentina	m/s	1,3	1,8	2,2	2,7														
		Cap. Refrigeración Maxima	TR	0,90	1,05	1,14	1,32														
	1	Flujo de agua	m³/h	0,5	0,6	0,6	0,7														
		presión estática disponible	Pa	950	900	800	700														
		Nível ruído	dB(A)	60	61	61	63														
		Veloc. Face Serpentina	m/s		1,3	1,7	2,0	2,3	2,6												
		Cap. Refrigeración Maxima	TR		1,12	1,35	1,56	1,75	1,93												
	2	Flujo de agua	m³/h		0,6	0,7	0,9	1	1,1												
		presión estática disponible	Pa		950	900	800	750	650												
		Nível ruído	dB(A)		59	59	60	62	64												
		Nivertuido																			
		Veloc. Face Serpentina	m/s			1,3	1,6	1,8	2,1	2,3	2,6										
		Cap. Refrigeración Maxima	TR			1,49	1,72	1,94	2,15	2,35	2,54										
	3	Flujo de agua	m³/h			0,8	0,9	1,1	1,2	1,3	1,4										
		presión estática disponible	Pa			900	850	800	700	600	500										
			dB(A)			59	59	61	62	65	67										
		Nível ruído	UD(A)			23	33	01	02	05	07										
		Veloc. Face Serpentina	/-				1.0	1.5	1.7	1.0	2.2	2.4	2.5								
		Cap. Refrigeración Maxima	m/s				1,3	1,5	1,7	1,9	2,2	2,4	2,6								
			TR				1,85	2,09	2,32	2,53	2,74	2,92	3,09								
	4	Flujo de agua	m³/h				1	1,1	1,3	1,4	1,5	1,6	1,7								
		presión estática disponible	Pa				900	850	750	650	600	450	350								
		Nível ruído	dB(A)				58	60	62	64	66	68	69								
		Veloc. Face Serpentina	m/s					1,3	1,5	1,7	1,8	2,0	2,2	2,4	2,6						
		Cap. Refrigeración Maxima	TR					2,21	2,45	2,68	2,91	3,09	3,09	3,09	3,28						
	5	Flujo de agua	m³/h					1,2	1,3	1,5	1,6	1,7	1,7	1,7	1,8						
		presión estática disponible	Pa					850	800	700	600	500	400	250	50						
		Nível ruído	dB(A)					60	61	63	65	67	69	71	73						
																					Ī
G4		Veloc. Face Serpentina	m/s						1,3	1,4	1,6	1,8	1,9	2,1	2,2						
		Cap. Refrigeración Maxima	TR						2,56	2,81	3,02	3,09	3,12	3,33	3,52						
	6	Flujo de agua	m³/h						1,4	1,5	1,7	1,7	1,7	1,8	1,9						
		presión estática disponible	Pa						800	750	650	550	450	300	100						
		Nível ruído	dB(A)						60	63	65	67	69	71	72						
			ub(A)						- 00	0.5	05	07	05	-/-	/2						i
		Veloc. Face Serpentina	m/s						1,5	1,7	1,9	2,0	2,2	2,4	2,6						ľ
		Cap. Refrigeración Maxima	m/s																		
	_		TR						2,32	2,55	2,76	2,97	3,17	3,37	3,55						
	7	Flujo de agua	m³/h						1,3	1,4	1,5	1,6	1,7	1,8	2						
		presión estática disponible	Pa						900	850	850	800	750	700	650						
		Nível ruído	dB(A)						64	64	64	64	65	67	68						
		Veloc. Face Serpentina	m/s									1,7	1,8	2,0	2,2	2,3	2,5	2,6			
		Cap. Refrigeración Maxima	TR									3,20	3,42	3,63	3,84	4,04	4,19	4,32			
	8	Flujo de agua	m³/h									1,8	1,9	2	2,1	2,2	2,3	2,4			
		presión estática disponible	Pa									850	800	750	700	700	650	600			
		Nível ruído	dB(A)									63	64	65	66	67	68	69			
																					I
		Veloc. Face Serpentina	m/s										1,6	1,7	1,8	2,0	2,1	2,2	2,4	2,5	
		Cap. Refrigeración Maxima	TR										3,62	3,85	4,07	4,25	4,32	4,32	4,32	4,48	
	9	Flujo de agua	m³/h										2	2,1	2,2	2,3	2,4	2,4	2,4	2,5	
		presión estática disponible	Pa										850	800	750	750	700	650	600	550	
			dB(A)										63	64	65	66	67	68	69		
		Nível ruído	UD(A)										03	04	05	00	07	08	09	69	
		Veloc. Face Serpentina																	0.1	0.0	
		Cap. Refrigeración Maxima	m/s											1,5	1,6	1,7	1,8	1,9	2,1	2,2	
			TR											4,03	4,23	4,32	4,32	4,41	4,62	4,82	
	10	Flujo de agua	m³/h											2,2	2,3	2,4	2,4	2,4	2,5	2,6	
														900	850	050	000	000	750	750	
	10	presión estática disponible Nível ruído	Pa											900	850	850	800	800	750	750	

Clase	tam-=	Cap. Refrigeración (Nominal)	TR	0,75	1	1,25	1,5		2	2,25		2,75	3	3,25		3,75	4	4,25			_
	tamano	del caudal	m³/h	510	680	850	1020	1190	1360	1530	1700	1870	2040	2210	2380	2550	2720	2890	3060	3230	34
		Veloc. Face Serpentina	m/s	1,3	1,8	2,2	2,7														
		Cap. Refrigeración Maxima	TR	0,90	1,05	1,14	1,32														
	1	Flujo de água	m³/h	0,5	0,6	0,6	0,7														
		presión estática disponible	Pa	850	750	650	550														
		Nível ruído	dB(A)	63	63	64	67														
		Niverruido																			П
		Veloc. Face Serpentina	m/s		1,3	1,7	2,0	2,3	2,6												
		Cap. Refrigeración Maxima	TR		1,12	1,35	1,56	1,75	1,93												
	2		m³/h		0,6	0,7	0,9	1	1,1												
		Flujo de agua	Pa		850	800	700	600	500												
		presión estática disponible	dB(A)		61	62	63	65	67												
		Nível ruído	ub(A)		01	02	0.5	05	07												
		VI 5 6 11	m/s			1,3	1,6	1,8	2,1	2,3	2,6										
		Veloc. Face Serpentina				1,49															
		Cap. Refrigeración Maxima	TR			-	1,72	1,94	2,15	2,35	2,54										
	3	Flujo de agua	m³/h			0,8	0,9	1,1	1,2	1,3	1,4										
		presión estática disponible	Pa			850	750	700	600	450	350										
		Nível ruído	dB(A)			60	61	63	65	67	68										
		Veloc. Face Serpentina	m/s				1,3	1,5	1,7	1,9	2,2	2,4	2,6								
		Cap. Refrigeración Maxima	TR				1,85	2,09	2,32	2,53	2,74	2,92	3,09								
	4	Flujo de agua	m³/h				1	1,1	1,3	1,4	1,5	1,6	1,7								
		presión estática disponible	Pa				800	750	650	550	450	300	200								
		Nível ruído	dB(A)				60	62	64	65	67	68	70								
																					П
		Veloc. Face Serpentina	m/s					1,3	1,5	1,7	1,8	2,0	2,2	2,4							
		Cap. Refrigeración Maxima	TR					2,21	2,45	2,68	2,91	3,09	3,09	3,09							
	5		m³/h					1,2	1,3	1,5	1,6	1,7	1,7	1,7							
		Flujo de agua																			
		presión estática disponible	Pa					800	700	600	500	400	250	100							
34		Nível ruído	dB(A)					61	63	65	67	69	70	71							
+																					
15		Veloc. Face Serpentina	m/s						1,3	1,4	1,6	1,8	1,9	2,1							
		Cap. Refrigeración Maxima	TR						2,56	2,81	3,02	3,09	3,12	3,33							
	6	Flujo de agua	m³/h						1,4	1,5	1,7	1,7	1,7	1,8							
		presión estática disponible	Pa						750	650	550	450	300	150							
		Nível ruído	dB(A)						62	64	66	68	70	71							
																					H
		Veloc. Face Serpentina	m/s					1,3	1,5	1,7	1,9	2,0	2,2	2,4	2,6						
		Cap. Refrigeración Maxima	TR					2,16	2,32	2,55	2,76	2,97	3,17	3,37	3,55						
	7	Flujo de agua	m³/h					1,2	1,3	1,4	1,5	1,6	1,7	1,8	2						
		presión estática disponible	Pa					800	750	700	650	600	550	500	450						
								67	67	68	68	69	70	72	72						
		Nível ruído	dB(A)					67	07	08	08	09	70	12	12						
		Value Face Corporation	,						4.0		4.5	4.7	4.0	0.0	0.0	0.0	0.5	2.5			
		Veloc. Face Serpentina Cap. Refrigeración Maxima	m/s						1,2	1,4	1,5	1,7	1,8	2,0	2,2	2,3	2,5	2,6			
			TR						2,49	2,74	2,97	3,20	3,42	3,63	3,84	4,04	4,19	4,32			
	8	Flujo de agua	m³/h						1,4	1,5	1,6	1,8	1,9	2	2,1	2,2	2,3	2,4			
		presión estática disponible	Pa						800	750	750	700	650	600	550	500	400	350			
		Nível ruído	dB(A)						66	66	66	67	68	69	70	71	72	73			
		Veloc. Face Serpentina	m/s							1,2	1,3	1,4	1,6	1,7	1,8	2,0	2,1	2,2	2,4	2,5	
		Cap. Refrigeración Maxima	TR							2,89	3,14	3,38	3,62	3,85	4,07	4,25	4,32	4,32	4,32	4,48	
	9	Flujo de agua	m³/h							1,6	1,7	1,9	2	2,1	2,2	2,3	2,4	2,4	2,4	2,5	
		presión estática disponible	Pa							800	800	750	700	650	600	550	500	450	400	300	
		Nível ruído	dB(A)							65	65	65	66	68	68	70	71	71	72	72	
			35(7,4)																		
		Veloc. Face Serpentina	m/s									1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,1	2,2	
		veloc, i ace serpentina	111/5																		
		Cap. Refrigeración Maxima	TD									3,54	3,78	4,03	4,23	4,32	4,32	4,41	4,62	4,82	
		Cap. Refrigeración Maxima	TR																		
	10	Cap. Refrigeración Maxima Flujo de agua	m³/h									1,9	2,1	2,2	2,3	2,4	2,4	2,4	2,5	2,6	
	10	Cap. Refrigeración Maxima										1,9 800 68	2,1 750 68	2,2 750	2,3 700	2,4 700	2,4 650	2,4 650	2,5 600	2,6 550	

Clase		Cap. Refrigeración (Nominal)	TR	0,75	1	1,25		1,75	2	2,25	2,5	2,75	3	3,25	3,5	3,75	4	4,25	4,5	4,75	
C.asc	tamaño d		m³/h	510	680	850	1020	1190	1360	1530	1700	1870	2040	2210	2380	2550	2720	2890	3060	3230	3400
		Veloc. Face Serpentina	m/s	1,3	1,8	2,2	2,7														
		Cap. Refrigeración Maxima	TR	0,90	1,05	1,14	1,32														
	1	Flujo de agua	m³/h	0,5	0,6	0,6	0,7														
		presión estática disponible	Pa	750	600	450	300														
		Nível ruído	dB(A)	66	68	70	73														
		Veloc. Face Serpentina	m/s		1,3	1,7	2,0	2,3	2,6												
		Cap. Refrigeración Maxima	TR		1,12	1,35	1,56	1,75	1,93												
	2	Flujo de agua	m³/h		0,6	0,7	0,9	1	1,1												
		presión estática disponible	Pa		750	650	500	400	250												
		Nível ruído	dB(A)		64	65	68	70	71												
		Veloc. Face Serpentina	m/s			1,3	1,6	1,8	2,1	2,3	2,6										
		Cap. Refrigeración Maxima	TR			1,49	1,72	1,94	2,15	2,35	2,54										
	3	Flujo de agua	m³/h			0,8	0,9	1,1	1,2	1,3	1,4										
		presión estática disponible	Pa			700	650	500	400	250	100										
		Nível ruído	dB(A)			63	65	67	69	70	71										
		Veloc. Face Serpentina	m/s				1,3	1,5	1,7	1,9	2,2	2,4									
		Cap. Refrigeración Maxima	TR				1,85	2,09	2,32	2,53	2,74	2,92									
	4	Flujo de agua	m³/h				1	1,1	1,3	1,4	1,5	1,6									
		presión estática disponible	Pa				700	600	500	350	250	100									
		Nível ruído.	dB(A)				63	65	67	68	70	72									
		Veloc. Face Serpentina	m/s					1,3	1,5	1,7	1,8	2,0	2,2								
		Cap. Refrigeración Maxima	TR					2,21	2,45	2,68	2,91	3,09	3,09								
	5	Flujo de agua	m³/h					1,2	1,3	1,5	1,6	1,7	1,7								
		presión estática disponible	Pa					650	550	450	350	200	50								
G4 +		Nível ruído	dB(A)					64	65	67	68	71	71								
M5																					
+		Veloc. Face Serpentina	m/s						1,3	1,4	1,6	1,8	1,9								
F7/F9		Cap. Refrigeración Maxima	TR						2,56	2,81	3,02	3,09	3,12								
,	6	Flujo de agua	m³/h						1,4	1,5	1,7	1,7	1,7								
		presión estática disponible	Pa						600	500	400	300	150								
		Nível ruído	dB(A)						64	66	68	70	70								
		Veloc. Face Serpentina	m/s							1,7	1,9	2,0	2,2	2,4	2,6						
		Cap. Refrigeración Maxima	TR							2,55	2,76	2,97	3,17	3,37	3,55						
	7	Flujo de agua	m³/h							1,4	1,5	1,6	1,7	1,8	2						
		presión estática disponible	Pa							500	450	350	250	150	100						
		Nível ruído	dB(A)							73	74	75	76	79	80						
		Veloc. Face Serpentina	m/s							1,4	1,5	1,7	1,8	2,0	2,2	2,3	2,5				
		Cap. Refrigeración Maxima	TR							2,74	2,97	3,20	3,42	3,63	3,84	4,04	4,19				
	8	Flujo de agua	m³/h							1,5	1,6	1,8	1,9	2	2,1	2,2	2,3				
		presión estática disponible	Pa							600	550	450	400	300	250	200	100				
		Nível ruído	dB(A)							71	71	72	73	76	76	78	79				
		Veloc. Face Serpentina	m/s								1,3	1,4	1,6	1,7	1,8	2,0	2,1	2,2	2,4		
		Cap. Refrigeración Maxima	TR								3,14	3,38	3,62	3,85	4,07	4,25	4,32	4,32	- 1		
	9	Flujo de agua	m³/h								1,7	1,9	2	2,1	2,2	2,3	2,4	2,4	2,4		
		presión estática disponible	Pa								600	550	500	450	350	300	250	150	100		
		Nível ruído	dB(A)								69	70	71	73	74	75	76	76	77		
		Veloc. Face Serpentina	m/s									1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,1	2,2	2,3
		Cap. Refrigeración Maxima	TR									3,54	3,78	4,03	4,23	4,32	4,32	4,41	4,62	4,82	5,01
	10	Flujo de agua	m³/h									1,9	2,1	2,2	2,3	2,4	2,4	2,4	2,5	2,6	2,8
		presión estática disponible	Pa									650	600	550	500	450	400	350	300	250	200
		Nível ruído	dB(A)									73	74	74	75	75	76	77	79	80	81


Clase		Cap. Refrigeración (Nominal)	TR	0,75	1	1,25	1,5	1,75	2	2,25	2,5	2,75	3	3,25	3,5	3,75	4	4,25	4,5	4,75	
	tamaño de		m³/h	510	680	850	1020	1190	1360	1530	1700	1870	2040	2210	2380	2550	2720	2890	3060	3230	340
		Veloc. Face Serpentina	m/s	1,3	1,8	2,2															
		Cap. Refrigeración Maxima	TR	0,90	1,05	1,14															
	1	Flujo de agua	m³/h	0,5	0,6	0,6															
		presión estática disponible	Pa	600	400	200															
		Nível ruído	dB(A)	71	73	76															
		Veloc. Face Serpentina	m/s		1,3	1,7	2,0	2,3													
		Cap. Refrigeración Maxima	TR		1,12	1,35	1,56	1,75													
	2	Flujo de agua	m³/h		0,6	0,7	0,9	1													
		presión estática disponible	Pa		600	450	300	100													
		Nível ruído	dB(A)		68	70	74	76													
		Veloc. Face Serpentina	m/s			1,3	1,6	1,8	2,1												
		Cap. Refrigeración Maxima	TR			1,49	1,72	1,94	2,15												
	3	Flujo de_agua	m³/h			0,8	0,9	1,1	1,2												
		presión estática disponible	Pa			550	450	300	150												
		Nível ruído	dB(A)			67	70	72	73												
		Veloc. Face Serpentina	m/s				1,3	1,5	1,7	1,9											
		Çap. Refrigeración Maxima	TR				1,85	2,09	2,32	2,53											
	4	Flujo d <u>e</u> agua	m³/h				1	1,1	1,3	1,4											
		presión estática disponible	Pa				550	450	300	150											
		Nível ruído	dB(A)				67	69	70	71											
		Veloc. Face Serpentina	m/s					1,3	1,5	1,7	1,8										
		Cap. Refrigeración Maxima	TR					2,21	2,45	2,68	2,91										
	5	Flujo de agua	m³/h					1,2	1,3	1,5	1,6										
G4		presión estática disponible	Pa					500	400	250	100										
+		Nível ruído	dB(A)					67	69	70	71										
M5 +		Tiverraido																			
т F7/F9		Veloc. Face Serpentina	m/s						1,3	1,4	1,6	1,8									
17/13		Cap. Refrigeración Maxima	TR						2,56	2,81	3,02	3,09									
H13/H14	6	Flujo de agua	m³/h						1,4	1,5	1,7	1,7									
.10,1		presión estática disponible	Pa						450	350	200	50									
		Nível ruído	dB(A)						67	68	70	72									
		Veloc. Face Serpentina	m/s					1,3	1,5	1,7	1,9										
		Cap. Refrigeración Maxima	TR					2,16	2,32	2,55	2,76										
	7	Flujo de agua	m³/h					1,2	1,3	1,4	1,5										
		presión estática disponible	Pa					400	300	250	150										
		Nível ruído	dB(A)					77	79	80	81										
			,-,																		
		Veloc. Face Serpentina	m/s						1,2	1,4	1,5	1,7	1,8								
		Cap. Refrigeración Maxima	TR						2,49	2,74	2,97	3,20	3,42								
	8	Flujo de agua	m³/h						1,4	1,5	1,6	1,8	1,9								
		presión estática disponible	Pa						450	350	300	200	100								
		Nível ruído	dB(A)						76	76	77	79	80								
		Veloc. Face Serpentina	m/s							1,2	1,3	1,4	1,6	1,7	1,8						
		Cap. Refrigeración Maxima	TR							2,89	3,14		3,62		4,07						
	9	Flujo de agua	m³/h							1,6	1,7	1,9	2	2,1	2,2						
		presión estática disponible	Pa							450	400	300	250	150	50						
		Nível ruído	dB(A)							74	74	76	77	80	80						
		NIVELLIUIO	35(7)							. 4				-	50						
		Veloc. Face Serpentina	m/s								1,1	1,3	1,4	1,5	1,6	1,7	1,8	1,9			
											3,28		3,78	4,03	4,23	4,32	4,32	4,41			
		Cap. Refrigeración Maxima	TD								5,20										
	10		TR m³/h								1.8	10	2.1	2.2	2.3	2.4	2.4	2.4			
	10	Flujo de agua	m³/h								1,8	1,9	2,1	2,2	2,3	2,4	2,4	2,4			
	10										1,8 500 78	1,9 450 79	2,1 350 80	2,2 300 80	2,3 250 81	2,4 200 82	2,4 100 83	2,4 50 83			

Selección Secciones

Secciones disponibles

El TKE-Slim se puede configurar con las siguientes secciones:

Nomenclatu	ıra Descripción
CM	Caja de mezcla
GM#	prefiltro - G4 o M5 o G4+M5
AG	Serpentina de refrigeración
UV	Lámpara UV
UM	Humidificador
AQ	Serpentina de calentamiento
RES	Resistencia de calefacción
ATav	Atenuador de ruido - antes del ventilador
VENT	Ventilador de alimentación
ATdv	Atenuador de ruido - Después del ventilador
F#	Filtro intermedio - Filtro fino - F7 o F9
H#	Filtro final - filtro absoluto - H13 o H14
INS	Inflado

Selección Secciones

Combinación de secciones

La selección de las secciones se realiza según las especificaciones del cliente y las condiciones necesarias del ambiente a acondicionar.

La combinación de las secciones determina la dimensión L del TKE-Slim.

sem	n Aten.							seccio	ones							
Filtro	Aquec.	СМ	GM#	AG	UM	UV	AQ	RES	ATav	VENT	ATdv	F#	Н#	INS	Comb. secciones	L
		CM	GM#	AG						VENT				INS	1	1200
		CM	GM#	AG		UV				VENT				INS	2	1200
	sem	CM	GM#	AG	UM					VENT				INS	3	1200
		CM	GM#	AG	UM	UV				VENT				INS	4	1200
		CM	GM#	AG				RES		VENT				INS	5	1200
GM#	RES	CM	GM#	AG		UV		RES		VENT				INS	6	1200
Givi#	RES	CM	GM#	AG	UM			RES		VENT				INS	7	1200
		CM	GM#	AG	UM	UV		RES		VENT				INS	8	1200
		CM	GM#	AG			AQ			VENT				INS	9	1750
	AQ	CM	GM#	AG		UV	AQ			VENT				INS	10	1750
	AQ	CM	GM#	AG	UM		AQ			VENT				INS	11	1750
		CM	GM#	AG	UM	UV	AQ			VENT				INS	12	1750
		CM	GM#	AG						VENT		F#		INS	13	1350
	50 m	CM	GM#	AG		UV				VENT		F#		INS	14	1350
	sem	CM	GM#	AG	UM					VENT		F#		INS	15	1350
		CM	GM#	AG	UM	UV				VENT		F#		INS	16	1350
GM#		CM	GM#	AG				RES		VENT		F#		INS	17	1350
+	RES	CM	GM#	AG		UV		RES		VENT		F#		INS	18	1350
F#	NES	CM	GM#	AG	UM			RES		VENT		F#		INS	19	1350
		CM	GM#	AG	UM	UV		RES		VENT		F#		INS	20	1350
		CM	GM#	AG			AQ			VENT		F#		INS	21	1850
	AQ	CM	GM#	AG		UV	AQ			VENT		F#		INS	22	1850
	Ad	CM	GM#	AG	UM		AQ			VENT		F#		INS	23	1850
		CM	GM#	AG	UM	UV	AQ			VENT		F#		INS	24	1850
		CM	GM#	AG						VENT		F#	H#	INS	25	1750
	sem	CM	GM#	AG		UV				VENT		F#	H#	INS	26	1750
	Jeili	CM	GM#	AG	UM					VENT		F#	H#	INS	27	1750
GM#		CM	GM#	AG	UM	UV				VENT		F#	H#	INS	28	1750
+		CM	GM#	AG				RES		VENT		F#	H#	INS	29	1750
F#	RES	CM	GM#	AG		UV		RES		VENT		F#	H#	INS	30	1750
+	ILLS	CM	GM#	AG	UM			RES		VENT		F#	H#	INS	31	1750
H#		CM	GM#	AG	UM	UV		RES		VENT		F#	H#	INS	32	1750
		CM	GM#	AG			AQ			VENT		F#	H#	INS	33	2300
	AQ	CM	GM#	AG		UV	AQ			VENT		F#	H#	INS	34	2300
	AQ	CM	GM#	AG	UM		AQ			VENT		F#	H#	INS	35	2300
		CM	GM#	AG	UM	UV	AQ			VENT		F#	H#	INS	36	2300

com	Aten.						sec	ccione	S							
Filtro	Aquec.	СМ	GM#	AG	UM	UV	AQ	RES	ATav	VENT	ATdv	F#	Н#	INS	Comb. secciones	L
		CM	GM#	AG						VENT	ATdv			INS	37	1450
		CM	GM#	AG		UV				VENT	ATdv			INS	38	1450
		CM	GM#	AG	UM					VENT	ATdv			INS	39	1450
	sem	CM	GM#	AG	UM	UV				VENT	ATdv			INS	40	1450
		CM	GM#	AG AG		107			ATav	VENT	ATdv ATdv			INS	41	1750
		CM	GM#	AG	UM	UV			ATav ATav	VENT	ATdv			INS	42 43	1750 1750
		CM	GM#	AG	UM	UV			ATav	VENT	ATdv			INS	44	1750
		CM	GM#	AG		•		RES	,,,,,,,	VENT	ATdv			INS	45	1450
		CM	GM#	AG		UV		RES		VENT	ATdv			INS	46	1450
		CM	GM#	AG	UM			RES		VENT	ATdv			INS	47	1450
GM#	RES	CM	GM#	AG	UM	UV		RES		VENT	ATdv			INS	48	1450
		CM	GM#	AG				RES	ATav	VENT	ATdv			INS	49	1750
		CM	GM# GM#	AG AG	UM	UV		RES	ATav ATav	VENT	ATdv ATdv			INS	50 51	1750 1750
		CM	GM#	AG	UM	UV		RES	ATav	VENT	ATdv			INS	52	1750
		CM	GM#	AG	OIVI	OV	AQ	INES	Alav	VENT	ATdv			INS	53	2000
		CM	GM#	AG		UV	AQ			VENT	ATdv			INS	54	2000
		CM	GM#	AG	UM		AQ			VENT	ATdv			INS	55	2000
	AQ	CM	GM#	AG	UM	UV	AQ			VENT	ATdv			INS	56	2000
	74	CM	GM#	AG			AQ		ATav	VENT	ATdv			INS	57	2300
		CM	GM#	AG		UV	AQ		ATav	VENT	ATdv			INS	58	2300
		CM	GM#	AG	UM		AQ		ATav	VENT	ATdv			INS	59	2300
		CM	GM#	AG AG	UM	UV	AQ		ATav	VENT	ATdv ATdv	F#		INS	60 61	2300 1650
		CM	GM#	AG		UV				VENT	ATdv	F#		INS	62	1650
		CM	GM#	AG	UM	•				VENT	ATdv	F#		INS	63	1650
		CM	GM#	AG	UM	UV				VENT	ATdv	F#		INS	64	1650
	sem	CM	GM#	AG					ATav	VENT	ATdv	F#		INS	65	2000
		CM	GM#	AG		UV			ATav	VENT	ATdv	F#		INS	66	2000
		CM	GM#	AG	UM				ATav	VENT	ATdv	F#		INS	67	2000
		CM	GM#	AG	UM	UV			ATav	VENT	ATdv	F#		INS	68	2000
		CM	GM#	AG				RES		VENT	ATdv	F#		INS	69	1650
		CM	GM#	AG AG	UM	UV		RES		VENT	ATdv ATdv	F#		INS	70	1650 1650
GM#		CM	GM#	AG	UM	UV		RES		VENT	ATdv	F#		INS	71 72	1650
+	RES	CM	GM#	AG				RES	ATav	VENT	ATdv	F#		INS	73	2000
F#		CM	GM#	AG		UV		RES	ATav	VENT	ATdv	F#		INS	74	2000
		CM	GM#	AG	UM			RES	ATav	VENT	ATdv	F#		INS	75	2000
		CM	GM#	AG	UM	UV		RES	ATav	VENT	ATdv	F#		INS	76	2000
		CM	GM#	AG			AQ			VENT	ATdv	F#		INS	77	2150
		CM	GM#	AG	110.4	UV	AQ			VENT	ATdv	F#		INS	78	2150
		CM	GM#	AG AG	UM	UV	AQ			VENT	ATdv ATdv	F#		INS	79 80	2150 2150
	AQ	CM	GM#	AG	OIVI	OV	AQ		ATav	VENT	ATdv	F#		INS	81	2500
		CM	GM#	AG		UV	AQ		ATav	VENT	ATdv	F#		INS	82	2500
		CM	GM#	AG	UM		AQ		ATav	VENT	ATdv	F#		INS	83	2500
		CM	GM#	AG	UM	UV	AQ		ATav	VENT	ATdv	F#		INS	84	2500
		CM	GM#	AG						VENT	ATdv	F#	H#	INS	85	2000
		CM	GM#	AG		UV				VENT	ATdv	F#	H#	INS	86	2000
		CM	GM#	AG	UM	UV				VENT	ATdv ATdv	F#	H#	INS	87	2000
	sem	CM	GM#	AG AG	UM	UV			ATav	VENT	ATdv	F#	H#	INS	88 89	2000
		CM	GM#	AG		UV			ATav	VENT	ATdv	F#	H#	INS	90	2300
		CM	GM#	AG	UM				ATav	VENT	ATdv	F#	H#	INS	91	2300
		CM	GM#	AG	UM	UV			ATav	VENT	ATdv	F#	H#	INS	92	2300
		CM	GM#	AG				RES		VENT	ATdv	F#	H#	INS	93	2000
GM#		CM	GM#	AG		UV		RES		VENT		F#	H#	INS	94	2000
+		CM	GM#	AG	UM			RES		VENT		F#	H#	INS	95	2000
F#	RES	CM	GM#	AG	UM	UV		RES		VENT		F#	H#	INS	96	2000
+		CM	GM#	AG AG		UV		RES	ATav	VENT		F#	H#	INS	97 98	2300 2300
H#		CM	GM#	AG	UM	UV		RES	ATav	VENT		F#	H#	INS	98	2300
		CM	GM#	AG	UM	UV		RES	ATav	VENT		F#	H#	INS	100	2300
		CM	GM#	AG			AQ			VENT		F#	H#	INS	101	2500
		CM	GM#	AG		UV	AQ			VENT		F#	Н#	INS	102	2500
		CM	GM#	AG	UM		AQ			VENT	ATdv	F#	H#	INS	103	2500
	AQ	CM	GM#	AG	UM	UV	AQ			VENT	ATdv	F#	H#	INS	104	2500
		CM	GM#	AG			AQ		ATav	VENT	ATdv	F#	H#	INS	105	2800
		CM	GM#	AG		UV	AQ		ATav	VENT		F#	H#	INS	106	2800
		CM	GM#	AG	UM	LEA	AQ		ATav	VENT		F#	H#	INS	107	2800
		CM	GM#	AG	UM	UV	AQ		ATav	VENT	ATdv	F#	H#	INS	108	2800

Selección - Filtros

Para seleccionar los filtros adecuados, se debe tener en cuenta el tipo de ambiente y el grado de filtración deseado. Los modelos de filtros disponibles para el TKE-Slim y las posibles combinaciones de filtros se enumeran a continuación.

Filtros disponibles / Clases de filtrado

En el TKE-SLIM están disponibles los siguientes filtros:

Catagoria		Clasificación		- Modelo	Elemento Filtrante	Formato Filtro	Moldeado
Categoria	EN779	EN1822 ISO16890	ISO29463		Elemento Fittante	Formato Filtro	Moldeado
Grosso	G4	Coarse-60%		F71B20/4	fibra sintética	Plano	Encartonado
Grosso Antimicr.	G4	Coarse-60%		F70B35-2	fibra antimicr. sintética	Plano	Encartonado
Médio	M5	ePM10-50%		F754	fibra sintética	Zig Zag	Encartonado
Fino	F7	ePM1-60%		MFP-ePM1-60%	microfibra de vidro	Plissado	Alumínio
rillo	F9	ePM1-90%		MFP-ePM1-90%	microfibra de vidro	Plissado	Alumínio
Absoluto Hepa		H13	ISO35H	MFP-ISO35H	microfibra de vidro	Plissado	Galvanizado
Absoluto nepa		H14	ISO45H	MFP-ISO45H	microfibra de vidro	Plissado	Galvanizado

Selección de los filtros

sección		Filtros
		G4
Prefiltro	GM#	M5
		G4 + M5
		G4 + F7
Prefiltro	C14#	G4 + F9
+	GM# +	M5 + F7
Filtro intermedio	F#	M5 + F9
riitio intermedio	ГĦ	G4 + M5 + F7
		G4 + M5 + F9
		G4 + F7 + H13
		G4 + F7 + H14
		G4 + F9 + H13
D. Ch.	C14#	G4 + F9 + H14
Prefiltro +	GM# +	M5 + F7 + H13
Filtro intermedio	+ F#	M5 + F7 + H14
+	+	M5 + F9 + H13
Filtro Final	H#	M5 + F9 + H14
TittoTitlai	1111	G4 + M5 + F7 + H13
		G4 + M5 + F7 + H14
		G4 + M5 + F9 + H13
		G4 + M5 + F9 + H14

Tamaño de los filtros

Tamaño	НхВ	Filtro 1	Filtro 2
1	360 x 600	287 x 439	
2	360 x 750	287 x 592	
3	360 x 900	287 x 439	287 x 287
4	360 x 1050	287 x 439	287 x 439
5	360 x 1200	287 x 592	287 x 439
6	360 x 1350	287 x 592	287 x 592
7	450 x 900	287 x 439	287 x 287
8	450 x 1050	287 x 439	287 x 439
9	450 x 1200	287 x 592	287 x 439
10	450 x 1350	287 x 592	287 x 592

Codificación - Filtros

Codificación de los filtros

filtración gruesa

FMP-BAC-G4/ENCP-PC/287X287X24 FMP-BAC-G4/ENCP-PC/439X287X24 FMP-BAC-G4/ENCP-PC/592X287X24

filtración fina

MFP-ePM1-60%-ALZ/287x287x95(102)x75/00/FNU/000/0
MFP-ePM1-60%-ALZ/439x287x95(102)x75/00/FNU/000/0
MFP-ePM1-60%-ALZ/592x287x95(102)x75/00/FNU/000/0
MFP-ePM1-90%-ALZ/287x287x95(102)x75/00/FNU/000/0
MFP-ePM1-90%-ALZ/439x287x95(102)x75/00/FNU/000/0
MFP-ePM1-90%-ALZ/592x287x95(102)x75/00/FNU/000/0

filtración media

F754/ENCZ/287X287X48 F754/ENCZ/439X287X48 F754/ENCZ/592X287X48

Filtración de alta eficacia

MFP-H13-GAL/287x287x292(299)x270/00/FNU/OTC/0
MFP-H13-GAL/439x287x292(299)x270/00/FNU/OTC/0
MFP-H13-GAL/592x287x292(299)x270/00/FNU/OTC/0
MFP-H14-GAL/287x287x292(299)x270/00/FNU/OTC/0
MFP-H14-GAL/439x287x292(299)x270/00/FNU/OTC/0
MFP-H14-GAL/592x287x292(299)x270/00/FNU/OTC/0

Características técnicas - Serpentinas

Condiciones de selección de las serpentinas

DX - R410-a				
condiciones del entrada de		TBS	27	ōC
	TBU	19	ōС	
aire	aire aire	UR	46	%
	altitud		0	m
condiciones de fluidez Temperatura	Evaporação	7,2	ōС	
	Tomporatura	Condensação	54,4	ōC
	remperatura	Sobreaquecimento	11,1	K
		Subresfriamento	8,3	K

AQ - agua ca	liente		
	TBS	10	ōС
entrada de aire	TBU	9	ōС
	UR	88	%
altitud		0	m
Tomporatura	Entrada	40	ōС
remperatura	Saída	30	ōС
	entrada de aire	entrada de aire UR altitud Entrada	entrada de aire

Serpentina de enfriamiento - AG

Tamaño	colector
	Diâm. (mm)
1	1/2"
2	1/2"
3	3/4"
4	3/4"
5	3/4"
6	3/4"
7	3/4"
8	3/4"
9	1"
10	1"

Tamaño	Cap. Máx. Aquecim.	flujo de agua	colector
	(kW)	(m³/h)	Diâm. (mm)
1	5,03	0,4	1/2"
2	4,49	0,4	1/2"
3	8,12	0,7	1/2"
4	10,15	0,9	1/2"
5	11,97	1	1/2"
6	12,8	1,1	1/2"
7	11,3	1	1/2"
8	14,33	1,2	3/4"
9	16,97	1,5	3/4"
10	18,16	1,6	3/4"

Características técnicas - Ventilador

Tamaño	Qtde Vent.	Pot.Total (kW)
1	1	0,78
2	1	0,78
3	1	0,78
4	1	0,78
5	1	0,78
6	1	0,78
7	2	1,56
8	2	1,56
9	2	1,56
10	3	2,34

Alimentación: 220V-50Hz monofásico / 220V-60Hz monofásico

Selección - Resistencia

Tamaño	Pot. Total (W)	tensión
Tarriario	600	1-220V
	1200	1-220V
	1800	1-220V
1,2,3,4		
	2400	1-220V
	3000	1-220V
	3600	3-220/380V
	600	1-220V
	1200	1-220V
	1800	1-220V
5,6	2400	1-220V
	3000	1-220V
	3600	3-220/380V
	5400	3-220/380V
	750	1-220V
7,8,9,10	1500	1-220V
	2250	1-220V
	3000	1-220V
	3750	1-220V
	4500	3-220/380V
	6750	3-220/380V

Características técnicas - Lámpara UV

Tamaño	Consumo (W)
1	45
2	64
3	72
4	86
5	100
6	110
7	72
8	86
9	100
10	110

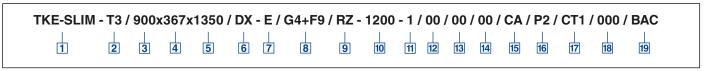
Alimentación: 220V-50Hz monofásico /

220V-60Hz monofásico

Características técnicas - Humidificador

Cap. Refrig. Nom. (TR)	Qtde Umidif.	Capac. Total humidificación (I/h)	Pot. Total (W)
0,75 a 4,75	1	1	110
5,00	2	2	220

Alimentación: 220V-50Hz monofásico / 220V-60Hz monofásico


Características técnicas - Atenuador de ruido

La atenuación prevista es de -4db (A) para los tamaños 1 a 6 y -6db (A) para los tamaños 7 a 10.

Monitoreo, Control y Automatización

Opcionalmente, El TKE-SLIM se puede proporcionar con varios tipos de configuraciones de monitoreo, control y automatización de parámetros, como temperatura, humedad y flujo de aire, y saturación de los filtros

Codificación

1 Serie:

TKE-Slim

2 Tamaño nominal: 1 Tamaño T1

Tarriario I I
Tamaño T2
Tamaño T3
Tamaño T4
Tamaño T5
Tamaño T6
Tamaño T7
Tamaño T8
Tamaño T9
Tamaño T10

3 Ancho (B):

3 And	по (в):
600	(Para T1)
750	(Para T2)
900	(Para T3 y T7)
1050	(Para T4 y T8)
1200	(Para T5 y T9)
1350	(Para T6 y T10)

4 Altura (H):

```
367 (Para T1, T2, T3, T4, T5 y T6)
467 (Para T7, T8, T9 e T10)
```

5 Longitud (L):

Dependiendo de las otras configuraciones

6 Tipo de Serpentina:

AG	Serp. Agua fria
DX	Serp. Expansión directa
AGQ	Serp. Agua fría + Serp. Calent.
DXQ	Serp. Expansión Directa + Serp. Calent.

7 Lado hidráulico:

D	Hidráulica	derecha
E	Hidráulica	izquierda

8 Filtros:

-	
G4	(Para M01, M02)
M5	(Para M03)
G4+M5	(Para M04,M05)
G4+F7	(Para M06,M07)
G4+F9	(Para M08, M09)
M5+F7	(Para M10)
M5+F9	(Para M11)
G4+M5+F7	(Para M12,M13)
G4+M5+F9	(Para M14,M15)
G4+F7+H13	(Para M16,M17)
G4+F7+H14	(Para M18,M19)
G4+F9+H13	(Para M20,M21)
G4+F9+H14	(Para M22,M23)
M5+F7+H13	(Para M24)
M5+F7+H14	(Para M25)
M5+F9+H13	(Para M26)
M5+F9+H14	(Para M27)
G4+M5+F7+H13	(Para M28,M29)
G4+M5+F7+H14	(Para M30,M31)
G4+M5+F9+H13	(Para M32,M33)
G4+M5+F9+H14	(Para M34,M35)

9 Resistencia eléctrica

RZ Resist. con aletas de acero galvanizadoSR Sin resistencia eléctrica

Potencia total de la resistenciaSin Resistencia

600	P=600W
750	P=750W
1200	P=1200W
1500	P=1500W
1800	P=1800W
2250	P=2250W
2400	P=2400W
3000	P=3000W
3600	P=3600W
3750	P=3750W
4500	P=4500W
5400	P=5400W
6750	P=6750W

11 Tensión:

111	rension:
0	Sin resistencia
1	220V - Monofásico
2	220V – Trifásico
3	380V – Trifásico

12 Lámpara UVC:

0	Sin lámpara
UV	Con lámpara

13 Humidificador

00	Sin humidificador
U1	Con 1 humidificador ultrasónico
U2	con 2 humidificadores ultrasónicos

14 Atenuador de ruido:

00	Sin Atenuador de Ruído
	A4

A1 Atenuador solo después del ventiladorA2 Atenuador Antes+Después del Ventilador

15 Automatización:

00	Sin automatización
CA	Con automatización

16 Presostato/Transductor Filtros

00	Sin Presostato o Transductor
----	------------------------------

P1 Con Presostato P2 Con transductor

17 Control de temperatura:

00	Sin control de temperatura
CT4	om common do tomporatara

CT1 En el ambiente CT2 En el retorno

CT3 En el ambiente - Retorno (informativo)

18 Control de humedad:

O00 Sin Control
UM1 En el ambiente
UM2 En el retorno
UM3 En el Ambiente

UM3 En el Ambiente – Retorno (informativo)

18 Control de humedad:

000 Sin Control
UM1 En el ambiente
UM2 En el retorno

UM3 En el Ambiente – Retorno (informativo)

19 Protocolo de comunicación:

000 Sin protocolo de comunicación
BAC Con Protocolo BACNET
MOD Con Protocolo MODBUS